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Abstract. We present complete classifications of automorphisms of two closed subalgebras

of the bounded analytic functions on the open unit disc D, namely, the subalgebra of functions

vanishing at the origin, and the subalgebra of functions whose first derivative vanishes at the

origin. The later subalgebra is known as the Neil algebra. We also characterize generalized

tri-circular projections on Hp(D) and Hp(D2), 1 ≤ p ≤ ∞, p 6= 2.

1. Introduction

Let D denote the open unit disc in the complex plane. Denote by H∞(D) the commutative

Banach algebra of all bounded analytic functions on D with

‖ϕ‖∞ = sup{|ϕ(z)| : z ∈ D} (ϕ ∈ H∞(D)).

This is one of the most important non-separable Banach algebras, with a variety of applica-

tions in function theory, operator theory, and operator algebras. The disc algebra A(D) is

another important space among the classical separable Banach algebras. Recall that

A(D) = H∞(D) ∩ C(T).

In general, given a domain Ω in C, we denote by A(Ω) the space of analytic functions that

extends continuously to the boundary of Ω. A classic result of L. Bers [4] serves as the starting

point for our discussion: Two domains Ω1 and Ω2 are conformally equivalent if and only if

there is an automorphism between A(Ω1) and A(Ω2). Recall that two domains are conformally

equivalent if there exists an angle preserving bijective analytic map between them. This is

the same as asserting that the domains being biholomorphically equivalent. In what follows,

we will refer to an automorphism as a linear and algebra isomorphism.

Returning to the special case when Ω1 = Ω2 = D, an isomorphism T : A(D) → A(D) is

precisely given by (again, see Bers [4])

Tf = f ◦ τ (f ∈ A(D)),

for some conformal map τ on D (that is, τ ∈ Aut(D)). Moreover, for H∞(D), we have the same

conclusion (a particular case of Rudin [22]): Isomorphisms between H∞(D) are induced by

conformal mappings as described above. As Bers and Rudin noted, Chevalley and Kakutani’s

earlier work also inspired this development. See also [21, 23] for more classical advancement.
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In this paper, we examine automorphisms of two important subalgebras of H∞(D) namely

H∞0 (D) and the Neil algebra. First, we recall that

H∞0 (D) = {f ∈ H∞(D) : f(0) = 0}.

Like H∞(D), the above space is crucial to functional analysis. For instance, see Lomonosov

[18] for counterexamples in the context of the Bishop-Phelps-Bollobás theorem. Next, we

recall the Neil Algebra H∞1 (D) (see [7]):

H∞1 (D) = {f ∈ H∞(D) : f ′(0) = 0}.

This space is commonly used to test classical theories such as the interpolation problem,

corona theorem, commutant lifting theorem, and invariant subspaces, to name a few. The

following is a summary of the main results concerning the automorphisms of H∞0 (D) and

H∞1 (D) (see Theorems 2.3 and 3.1). For any Banach space X, the Banach algebra of bounded

linear operators on X is denoted by B(X).

Theorem 1.1. Let X = H∞0 (D) or H∞1 (D), and let T : X → X be a map. Then T is an

automorphism if and only if there exists θ ∈ R such that

(Tf)(z) = f(eiθz),

for all f ∈ X and z ∈ D.

Basically, this shows that H∞0 (D) and H∞1 (D)’s automorphisms are simple (or trivial).

Along the way, we prove that (see Theorem 2.1) automorphisms of H∞(D) preserve inner

functions. We also prove that (see Corollary 3.2): If T is a surjective linear isometries of

H∞1 (D), then there exist α ∈ T and θ ∈ R such that

Tf(z) = αf(eiθz),

for all f ∈ H∞1 (D) and z ∈ D. The main idea of the proof of the preceding fact is straightfor-

ward. It all comes down to showing that H∞1 (D) can be represented as a uniform algebra.

The second goal of this paper is to describe the structure of generalized tri-circular pro-

jections on Hp(D) and Hp(D2), 1 ≤ p ≤ ∞. The notion of generalized tri-circular projection

comes from the ideas of bicircular projections, which also connect the structure of surjective

isometries on Banach spaces. We begin by recalling the definition of projections on Banach

spaces in order to be more precise. Given a Banach space X (here all Banach spaces are over

C), a bounded linear operator P on X is called a projection if

P 2 = P.

A projection P ∈ B(X) is called bicircular projection if P + λ(I − P ) is a surjective linear

isometry for some λ ∈ T, and it is called generalized bicircular projection if there exists

λ ∈ T \ {1} such that P + λ(I − P ) is a surjective linear isometry [9].

Projections are fundamental building blocks for more complex operators, but depending

on the Banach spaces, they can be adequately complex. On the other hand, surjective linear

isometries often help explain operators on Banach and Hilbert spaces [8]. Given the preceding



AUTOMORPHISMS AND GENERALIZED PROJECTIONS 3

and subsequent definitions, we note that, despite the benefits of using surjective linear isome-

tries to construct specific projections, which we will also discuss in this paper, the mechanism

itself can be computationally intensive.

Generalized bicircular projections are fully described in some classical Banach spaces. For

instance, finite dimensional Banach spaces with respect to various G-invariant norms [9],

minimal ideals of operators [5], JB∗-triples [13], certain Hardy spaces [16], Lp-spaces, 1 ≤
p <∞, p 6= 2 [17], etc.

Generalized tri-circular projections, a finer concept of projections, were introduced earlier

in [1]. The present definition, however, is derived from [6, Definition 1.4].

Definition 1.2. A nonzero projection P on a Banach space X is said to be a generalized

tri-circular projection if there exist distinct scalars λ, µ ∈ T \ {1} and nonzero projections

Q,R ∈ B(X) such that P ⊕Q⊕R = I and P + λQ+ µR is a surjective linear isometry.

Generalized tri-circular projections and related topics have recently received increased at-

tention. This also has to do with questions about projections and isometries on Banach

spaces. Generalized tri-circular projections are completely characterized for some known

spaces: C(X) [1], Cn and Mn(C) [2], minimal norm ideals on operator algebra B(H) [6],

JB∗-triple [14], Hilbert C0(X)-modules [15], and the Banach spaces of functions of bounded

variation and of absolutely continuous functions [12].

Generally, the solution to a set of projection-related equations is used to classify general-

ized tri-circular projections. Thanks to Čuka and Ilǐsević’s work [6] (also see Lemma 4.1), we

employ identical methodologies. The classification of generalized tri-circular projections on

Hp(D) (see Theorem 4.3) appears to be similar to that of other classes of classical Banach

spaces obtained earlier. However, the answer for Hp(D2) (see Theorem 5.1) differs signifi-

cantly, which perhaps highlights the complexity of several complex variables. We also remark

that the later result is the first instance of generalized tri-circular projections in several vari-

ables.

The remaining part of the paper is organized as follows. Section 2 deals with the classifica-

tion of automorphisms of H∞0 (D). We also prove that automorphisms of H∞(D) preserve inner

functions. Section 3 studies the Neil algebra H∞1 (D) and classifies automorphisms of H∞1 (D).

We also classify surjective linear isometries of H∞1 (D). Section 4 serves as the starting point

for the second half of this paper. Here we characterize generalized tri-circular projections on

Hp(D), 1 ≤ p ≤ ∞, p 6= 2. The final section, Section 5, classifies the generalized tri-circular

projections on Hp(D2), 1 ≤ p ≤ ∞, p 6= 2.

2. Automorphisms of H∞0 (D)

The purpose of this section is to classify the automorphisms of H∞0 (D). We begin by

addressing a natural question that may be familiar to experts. However, we were unable to

locate it in the literature. The proof uses a two-variables function theoretic result.

Theorem 2.1. Automorphisms of H∞(D) preserve inner functions.
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Proof. Let T be an automorphism of H∞(D), and let ϕ ∈ H∞(D) be an inner function.

Assume, contrary to the desired conclusion, that Tϕ is not inner. There exists ε > 0 such

that m(K) > 0, where

K = {z ∈ T : |Tϕ(z)| < 1− ε}.
Define the function Tϕ⊗ 1 ∈ H∞(T2) by

(Tϕ⊗ 1)(z1, z2) := (Tϕ)(z1),

for all (z1, z2) ∈ T2. Set K1 = K × T. Since

|(Tϕ⊗ 1)(z1, z2)| < 1− ε,

for all (z1, z2) ∈ K1, it follows that m(K1) > 0, and hence Tϕ⊗ 1 is not inner. Now, in view

of K1, there exists ψ ∈ H∞(T2) such that (cf. [11, Theorem 5.9, p. 297])

|ψ(z1, z2)| =

{
1 if (z1, z2) ∈ K1

1− ε if (z1, z2) ∈ T2 \K1.

Set

K2 = {z1 ∈ T : (z1, z2) ∈ K1 for some z2 ∈ T},
and define a function ψ1 ∈ L∞(T) by

ψ1(z1) = ψ(z1, z2) (z1 ∈ T).

Clearly, |ψ1(z1)| = |ψ(z1, z2)| = 1 on K2, and |ψ1(z1)| = |ψ(z1, z2)| = 1 − ε on T \K2. Since

ψ ∈ H∞(D2), we have the power series expansion

ψ1(z1) = ψ(z1, z2) =
∞∑

n,m=0

anmz
n
1 z

m
2 .

Since
∞∑

n,m=0

|anmzm2 |2 ≤
∞∑

n,m=0

|anm|2|zm2 |2 =
∞∑

n,m=0

|anm|2 <∞,

we conclude that ψ1 ∈ H2(T), and hence ψ1 ∈ H∞(T). Now there exists g ∈ H∞(T) such

that Tg = ψ1. Then ‖Mϕg‖ = ‖ϕg‖∞ = 1, but

‖T (ϕg)‖∞ = ‖T (ϕ)T (g)‖∞ = ‖(Tϕ)ψ1‖∞ ≤ 1− ε,

which is a contradiction. Thus Tϕ is an inner function. �

Next, our goal is to prove that automorphisms of H∞0 (D) preserve inner functions. The

following simple and general observation is crucial. In view of f = f(0) + (f − f(0)) for all

f ∈ H∞(D), we write the Banach space direct sum as

(2.1) H∞(D) = CuH∞0 (D).

Fix an automorphism T of H∞0 (D), and define X : H∞(D)→ H∞(D) by

(2.2) X(α + βf) = α + βT−1f,



AUTOMORPHISMS AND GENERALIZED PROJECTIONS 5

for all α, β ∈ C and f ∈ H∞0 (D), and claim that X is an automorphism. Clearly, X|H∞
0 (D) =

T−1 and X(1) = 1. A routine computation shows that X is linear and multiplicative. We

check, for instance, the linearity of X: If αi, βi, γ ∈ C and fi ∈ H∞0 (D), i = 1, 2, then

X((α1 + β1f1) + γ(α2 + β2f2)) = X(α1 + γα2 + β1f1 + γβ2f2)

= α1 + γα2 + T−1(β1f1 + γβ2f2)

= α1 + T−1(β1f1) + γ(α2 + T−1(β2f2))

= X(α1 + β1f1) + γX(α2 + β2f2).

Now we show that X is injective: let α+βT−1f = 0. If β = 0, then α = 0. Therefore, assume

that β 6= 0. This implies that α + β(T−1f)(z) = 0 for every z ∈ D. Since T−1f(0) = 0, if

follows that α = 0. Then T−1f = 0, and hence f = 0. To prove that X is onto, assume that

g ∈ H∞(D). Since T−1 is onto and g − g(0) ∈ H∞0 (D), there exists g̃ ∈ H∞0 (D) such that

T−1(g̃) = g − g(0).

Then g = g(0) + T−1(g̃) = X(g(0) + g̃), which ends the proof of the claim

Lemma 2.2. Automorphisms of H∞0 (D) preserve inner functions.

Proof. Fix an automorphism T of H∞0 (D), and consider X as defined in (2.2). Pick an inner

function ϕ ∈ H∞0 (D), and assume on contrary that Tϕ ∈ H∞0 (D) is not inner. We know that

X|H∞
0 (D) = T−1, and hence by Theorem 2.1 we conclude that X(Tϕ) = T−1(Tϕ) = ϕ is inner,

which is a contradiction. �

We are now ready for characterizations of the automorphisms of H∞0 (D). Our proof is in

the lines of deLeeuw, Rudin, and Wermer [10].

Theorem 2.3. Let T : H∞0 (D)→ H∞0 (D) be a map. Then T is an automorphism if and only

if there exists θ ∈ R such that

(Tf)(z) = f(eiθz) (f ∈ H∞0 (D), z ∈ D).

Proof. The sufficient part is trivial. For the necessary direction, consider the inner function

ϕ ∈ H∞0 (D) defined by ϕ(z) = z, z ∈ D. Then τ := Tϕ is an inner function (see Lemma 2.2).

Note that τ(0) = 0 forces that τ is non-constant, which, in turn, yields |τ | < 1 on D (cf. [20,

Theorem 2.2.10]). Next, we fix f ∈ H∞0 (D) and z0 ∈ D. Since (f 2 − f(τ(z0))f)(τ(z0)) = 0

and f(0) = 0, there exist g, g̃ ∈ H∞(D) such that

f 2 − f(τ(z0))f = (ϕ− τ(z0))g,

and

f = ϕg̃.

Together, the equalities mentioned above imply that

f 3 − f(τ(z0))f
2 = (ϕ− τ(z0))ϕgg̃.

Again, in view of f = ϕg̃, this further leads to

f 4 − f(τ(z0))f
3 = (ϕ2 − τ(z0)ϕ)ϕgg̃2.
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Applying the operator T to both sides of the above, we find

Tf 4 − f(τ(z0))Tf
3 = T (ϕ2 − τ(z0)ϕ)T (ϕgg̃2).

Since T (ϕ) = τ , T (ϕ2) = τ 2 (recall that T is multiplicative) and (τ 2 − τ(z0)τ)(z0) = 0, by

evaluating at z = z0, the above identity yields (Tf 4)(z0) = f(τ(z0))(Tf
3)(z0). Since z0 ∈ D

was arbitrary, we conclude that

(Tf 4)(z) = f(τ(z))(Tf 3)(z) (z ∈ D).

By setting T−1ϕ = ψ, a similar computation yields the following identity:

(T−1f 4)(z) = f(ψ(z))(T−1f 3)(z) (z ∈ D).

Writing ϕ4 = T (T−1(ϕ4)) and then applying the above identity to f = T−1ϕ, we find

ϕ4 = T ((T−1ϕ)4)

= (T−1ϕ ◦ τ)T (T−1ϕ)3

= (ψ ◦ τ)T (T−1ϕ3)

= (ψ ◦ τ)ϕ3.

By the definition of ϕ, it follows that ψ ◦ τ(z) = z, z ∈ D. Similarly, using T−1(Tϕ)4 =

(Tϕ ◦ ψ)T−1(Tϕ)3, we find τ ◦ ψ(z) = z, z ∈ D, which proves that τ is a conformal map of

D, hence there is a real number θ such that

τ(z) = eiθz (z ∈ D).

For a fixed z0 ∈ D, we again observe that

fϕ− f(τ(z0))ϕ = (ϕ− τ(z0))h,

for some h ∈ H∞(D). By multiplying both sides by ϕ2, if follows that

fϕ3 − f(τ(z0))ϕ
3 = (ϕ2 − τ(z0)ϕ)hϕ.

Then T ((ϕ2 − τ(z0)ϕ))(z0) = 0 implies that

(Tf)(z)τ 3(z) = f(τ(z))τ 3(z),

for all f ∈ H∞0 (D) and z ∈ D. Using the equality τ(z) = eiθz, we conclude that

Tf(z)e3iθz = f(eiθz)e3iθz,

for all z ∈ D, and hence Tf = f ◦ τ . This completes the proof of the theorem. �

3. Automorphisms of Neil Algebra

In this section we characterise the automorphism of the Neil Algebra H∞1 (D). We also

classify surjective linear isometries of H∞1 (D). Recall that

H∞1 (D) = {f ∈ H∞(D) : f ′(0) = 0},

is a closed Banach subalgebra of H∞(D).
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Theorem 3.1. Let T : H∞1 (D)→ H∞1 (D) be a map. Then T is an automorphism if and only

if there exists θ ∈ R such that

(Tf)(z) = f(eiθz) (f ∈ H∞1 (D), z ∈ D).

Proof. The sufficient condition holds trivially so we only need to prove the necessary condition.

Let f ∈ H∞1 (D). Clearly, λ ∈ Ran(f) if and only if f − λ is not invertible in H∞1 (D). Since

T is an automorphism, we get f −λ is invertible if and only if Tf −λ is invertible. Therefore

Ran(f) = Ran(Tf).

Consider the identity function id(z) = z for all z ∈ D. Then id2(z) = z2 and id3(z) = z3. Let

f2 := T (id2), and f3 := T (id3). Since T is an automorphism, f2, f3 6= 0. Observe that

T (id6) = T (id2)3 = f 3
2 = T (id3)2 = f 2

3 .

Let z0 be a zero of f2 of multiplicity n. Since f 3
2 = f 2

3 , it follows that z0 is a zero of f 2
3 of

multiplicity 3n for some n ≥ 1. In other words, z0 is a zero of f3 of multiplicity 3n/2 ∈ N,

and hence n is even. Therefore

τ :=
f3
f2
∈ Hol(D).

Then, f 2
3 = τ 2f 2

2 = f 3
2 , and hence f2 = τ 2 outside the isolated zeros of f2. By the identity

theorem, f2 = τ 2, and so f3 = τ 3 on D. Since τ 2 = f2 is bounded, we conclude that

τ ∈ H∞(D). Moreover, we have that T (id2) = τ 2 and T (id3) = τ 3. Now

Ran(τ 2) = Ran(τ 3) = id2 = id3 = D.

By the open mapping theorem, τ 2 and τ 3 are open maps. Thus τ 2(D) ⊂ D, and τ 3(D) ⊂ D,

which implies that τ(D) ⊂ D. Next, we claim that τ is in Aut(D). To this end, let f ∈ H∞1 (D)

and let z0 ∈ D. Since f − f(τ(z0)) vanishes at τ(z0), we have

f − f(τ(z0)) = (id− τ(z0))g,

for some g ∈ H∞(D). Multiplying each side by id4 and then applying T , we find

T (f id4)− f(τ(z0))T (id4) = (T (id3)− T (τ(z0)id
2))T (g id2).

In particular, if z = z0 is arbitrary, then

Tf(z0)τ
4(z0)− f(τ(z0))τ

4(z0) = (τ 3(z0)− τ(z0)τ
2(z0))T (g id2)(z0),

which (after simplification) gives us Tf(z0)τ
4(z0)− f(τ(z0))τ

4(z0) = 0, and hence

(Tf − f ◦ τ)τ 4 = 0.

Choose a neighbourhood N(0, δ) of 0 ∈ D such that

N(0, δ) ⊂ D.

Since τ 4 6≡ 0 (note that T is an algebra automorphism), τ 4 has finitely many zeros in N(0, δ).

Thus Tf − f ◦ τ has infinitely many zeros in N(0, δ) ⊂ D. By the identity theorem, we

conclude

Tf = f ◦ τ (f ∈ H∞1 (D)).
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Since T−1 is also algebra automorphism, by the previous argument, there exists ψ ∈ H∞(D)

such that

T−1g = g ◦ ψ (g ∈ H∞1 (D)),

and hence, for each g ∈ H∞1 (D), we have

g = T−1(Tg) = T−1(g ◦ τ) = g ◦ (τ ◦ ψ) (g ∈ H∞1 (D)).

In particular, if g(z) = z2, then z2 = (τ(ψ(z)))2, that is

(z − τ(ψ(z)))(z + τ(ψ(z))) = 0.

We claim that τ(ψ(z)) = z for every z 6= 0 in D. To show this, first, we observe following the

proof of the above equality that g(z) = z3 implies that

(z − τ(ψ(z))(z2 + (τ(ψ(z))2 + zτ(ψ(z))) = 0.

If τ(ψ(z0)) = −z0 for some nonzero z0 ∈ D, then we get 2z30 = 0, which is a contradiction.

This proves the claim that τ(ψ(z)) = z for every z 6= 0 in D. Applying the identity theorem,

we finally conclude that τ ◦ ψ = id. Using similar argument we get, ψ ◦ τ = id. Therefore,

we conclude that τ is a conformal map. Since f ◦ τ ∈ H∞1 (D), we have

f ′(τ(0))τ ′(0) = 0.

Since τ
′
(0) 6= 0, we get f ′(τ(0)) = 0 for every f ∈ H∞1 (D). Choose, for instance, f(z) = z2

2
,

and conclude that τ(0) = 0. This completes the proof. �

Now we turn to characterizations of surjective linear isometries of H∞1 (D). The result is

largely a consequence of the fact that H∞1 (D) is uniform algebra. Denote byM(H∞1 (D)) the

maximal ideal space of H∞1 (D). It is clear thatM(H∞1 (D)) is a complex object, and that the

structure ofM(H∞1 (D)) will be a key factor in many questions regarding the Banach algebra

H∞1 (D). We apply the basic structure of M(H∞1 (D)) to prove that H∞1 (D) is a uniform

algebra (just as in the case of H∞(D)).

Corollary 3.2. Let T be a surjective linear isometries of H∞1 (D). Then there exist α ∈ T
and θ ∈ R such that

Tf(z) = αf(eiθτ(z)) (f ∈ H∞1 (D), z ∈ D).

Proof. Consider the Gelfand map

Γ : H∞1 (D) −→ C(M(H∞1 (D))),

defined by

Γf = f̂ ,

where f̂(ϕ) = ϕ(f) for all ϕ ∈ M(H∞1 (D)) and f ∈ H∞1 (D). For each f ∈ H∞1 (D), we

compute (just as in the case of H∞(D))

‖f̂‖ = sup
ϕ∈M(H∞

1 (D))
|f̂(ϕ)| = sup

ϕ∈M(H∞
1 (D))

|ϕ(f)| ≤ ‖f‖.
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On the other hand, for each ϕ ∈M(H∞1 (D)), we have

‖f̂‖ ≥ sup
ϕλ∈M(H∞

1 (D))
|f̂(ϕλ)| = sup

ϕλ∈M(H∞
1 (D))

|ϕλ(f)| = sup
λ∈D
|f(λ)| = ‖f‖,

and hence ‖f‖ = ‖f̂‖, that is, Γ is an isometry. We identify H∞1 (D) with Ĥ∞1 (D) :=

Γ(H∞1 (D)). Let ϕ1 6= ϕ2 be in M(H∞1 (D)). Then there exists f0 ∈ H∞1 (D) such that

ϕ1(f0) 6= ϕ2(f0), that is

f̂0(ϕ1) 6= f̂0(ϕ2).

Therefore Ĥ∞1 (D) separates the points of M(H∞1 (D)). Hence we conclude that H∞1 (D) is an

uniform algebra. The remainder of the proof now follows from [10, Theorem 3] and Theorem

3.1. �

For each n ∈ N, define the algebra H∞0,1,2,...,n(D) as

H∞0,1,2,...,n(D) = {f ∈ H∞(D) : f (j)(0) = 0, j = 0, 1, . . . , n}.

Suppose T is an automorphism on H∞0,1,2,...,n(D) onto itself. A similar argument to the one

used to prove the preceding theorem implies that

Tf(z) = f(eiθz) (f ∈ H∞0,1,2,...,n(D)),

for some θ ∈ R. A similar statement as in Corollary 3.2 also holds true for surjective linear

isometries of H∞1,2,...,n(D).

4. Generalized projections on Hp(D)

In this section, we characterize generalized tri-circular projections on Hp(D), 1 ≤ p ≤ ∞,

p 6= 2. As part of the necessary background, we require two results from the literature. The

first one concerns representations of generalized tri-circular projections [6, Lemma 1.5]:

Lemma 4.1. Let X be a Banach space, P,Q,R, T ∈ B(X), and let λ, µ ∈ C\{1} be distinct

scalars. The following conditions are equivalent:

(1) T = P + λQ+ µR and P , Q, and R are projections satisfying P ⊕Q⊕R = I.

(2) The following holds: (T − I)(T − λI)(T − µI) = 0 and

P =
(T − λI)(T − µI)

(λ− 1)(µ− 1)
, Q =

(T − I)(T − µI)

(λ− 1)(λ− µ)
, R =

(T − I)(T − λI)

(µ− 1)(µ− λ)
.

The second tool is classifications of surjective isometries on Hardy spaces [19, Proposition

2]:

Proposition 4.2. Let 1 ≤ p < ∞, p 6= 2, and let T ∈ B(Hp(D)). Then T is a linear

surjective isometry if and only if there exists τ ∈ Aut(D) and a unimodular constant α such

that

Tf = α(τ ′)
1
pf ◦ τ (f ∈ Hp(D)).
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In what follows, for any τ ∈ Aut(D) we denote

τ0 = (τ ′)
1
p , τ1 = (τ ′ ◦ τ)

1
p , and τ2 = (τ ′ ◦ τ 2)

1
p .

Moreover, define id ∈ Aut(D) by

id(z) = z (z ∈ D).

We are now ready for the classification of generalized tri-circular projections. The Lagrange

polynomials are an integral part of the proof presented below, which is also typical for com-

parable results in other Banach spaces.

Theorem 4.3. Let 1 ≤ p ≤ ∞, p 6= 2. P ∈ B(Hp(D)) is a generalized tri-circular projection

if and only if there exists a surjective linear isometry T ∈ B(Hp(D)) such that

(1) T 3 = I, and

(2) T = P + λQ + λ2R for some nontrivial projection Q,R ∈ B(Hp(D)) and a cube root

of unity λ.

Moreover, P = 1
3
(I + T + T 2), Q = 1

3
(I + λ2T + λT 2), and R = 1

3
(I + λT + λ2T 2).

Proof. First, we assume that 1 ≤ p < ∞. Suppose P ∈ B(Hp(D)) is a generalized tri-

circular projection. By the definition, there exist distinct scalars λ1, λ2 ∈ T\{1} and nonzero

projections Q and R on Hp(D) such that P ⊕ Q ⊕ R = I and T := P + λ1Q + λ2R is a

surjective linear isometry. By Lemma 4.1, we write

(4.1) P =
(T − λ1I)(T − λ2I)

(1− λ1)(1− λ2)
, Q =

(T − I)(T − λ2I)

(λ1 − 1)(λ1 − λ2)
, R =

(T − I)(T − λ1I)

(λ2 − 1)(λ2 − λ1)
and

(4.2) T 3 − (1 + a)T 2 + (a+ b)T − bI = 0,

where

a = λ1 + λ2 and b = λ1λ2.

By Proposition 4.2, there exist τ ∈ Aut(D) and a unimodular constant α such that

Tf = ατ0f ◦ τ,

for all f ∈ Hp(D). Then, for each f ∈ Hp(D), we have

(4.3) T 2f = α2τ0τ1f ◦ τ 2 and T 3f = α3τ0τ1τ2f ◦ τ 3,

and hence by (4.2)

α3τ0τ1τ2f ◦ τ 3 − (1 + a)α2τ0τ1f ◦ τ 2 + (a+ b)ατ0f ◦ τ − bf = 0.(4.4)

We claim that there are only three possible options:

(1) τ = id,

(2) τ 6= id and τ 2 = id,

(3) τ, τ 2 6= id and τ 3 = id.
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Let us assume the contrary. Suppose id 6= τ, τ 2, τ 3. Since τ, τ 2, and τ 3 are analytic functions,

there exists z0 ∈ D such that {z0, τ(z0), τ
2(z0), τ

3(z0)} is a set of distinct scalars. Consider a

Lagrange polynomial L such that

L(τ(z0)) = L(τ 2(z0)) = L(τ 3(z0)) = 0 and L(z0) = 1.

Applying (4.4) to f = L and at z = z0, we obtain

0 = τ0(z0){α3τ1(z0)τ2(z0)L(τ(z0)
3)− (1 + a)τ1(z0)L(τ(z0)

2) + (a+ b)αL(τ(z0))

+ (a+ b)αL(τ(z0))} − bL(z0)

= −b,

and hence λ1λ2 = 0, which gives a contradiction to the fact that both λ1 and λ2 are nonzero,

and proves the claim.

We will now examine each of the three cases separately. First, we consider the nontrivial

case (as the other two cases would be shown to be redundant):

Case I: τ, τ 2 6= id and τ 3 = id. In particular, for τ 3 = id, (4.4) yields

α3τ0τ1τ2f ◦ id− (1 + a)α2τ0τ1f ◦ τ 2 + (a+ b)ατ0f ◦ τ − bf = 0.(4.5)

Applying this to f = 1, we obtain

α3τ0τ1τ2 = (1 + a)α2τ0τ1 − (a+ b)ατ0 + b,(4.6)

which, applied to (4.5) further yields

(1 + a)α2τ0τ1(f ◦ id− f ◦ τ 2)− (a+ b)ατ0(f ◦ id− f ◦ τ) + b(f ◦ id− f) = 0.

In particular, if f = id, then the above identity implies

(4.7) (1 + a)α2τ0τ1(id− τ 2) = (a+ b)ατ0(id− τ),

and for f = id2, it yields

(4.8) (1 + a)α2τ0τ1(id
2 − (τ 2)2)− (a+ b)ατ0(id

2 − τ 2) = 0.

Applying the first identity to the latter identity, we find

(a+ b)ατ0(id− τ)(id+ τ 2)− (a+ b)ατ0(id
2 − τ 2) = 0.

Since ατ0 6= 0, it follows that

(a+ b)(id− τ)(τ 2 − τ) = 0.

As we know that id 6= τ and τ 2 6= τ , we finally have that a+ b = 0, that is

λ1 + λ2 + λ1λ2 = 0.

Finally, plugging the right side of (4.7) into (4.8) and noting the fact that ατ0τ1 6= 0, we see

that

(1 + a)(id− τ 2)(τ 2 − τ) = 0,
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and hence 1 + a = 0. Consequently, 1 + λ1 + λ2 = 0. This together with λ1 + λ2 + λ1λ2 = 0

imply that λ1 = λ and λ2 = λ2, where λ is cube root of unity. Therefore, by (4.1) and (4.2),

it follows that T 3 = I and

P =
I + T + T 2

3
, Q =

I + λ2T + λT 2

3
, and R =

I + λT + λ2T 2

3
.

Case II: Let τ 6= id and τ 2 = id. Note in particular that τ2 = τ0 (recall that τ2 = (τ ′ ◦ τ 2)
1
p ).

By (4.4), we have

α3(τ 20 τ1)f ◦ τ − (1 + a)α2τ0τ1f ◦ id+ (a+ b)ατ0f ◦ τ − bf = 0,

for all f ∈ Hp(D). In particular, if f = 1, we have

(4.9) α3(τ 20 τ1) = (1 + a)α2τ0τ1 − (a+ b)ατ0 + b,

and, for f = id, we obtain

(4.10) α3(τ 20 τ1)τ − (1 + a)α2τ0τ1id+ (a+ b)ατ0τ − bid = 0.

In view of (4.9), the latter identity implies

(1 + a)α2τ0τ1(τ − id) + b(τ − id) = 0.

Since τ 6= id is analytic we have

(4.11) b = −(1 + a)α2τ0τ1.

Again, by (4.9), we have (1 + a)α2τ0τ1 = α3(τ 20 τ1) + (a + b)ατ0 − b. Applying this to (4.10),

we have

α3(τ 20 τ1)τ − (α3(τ 20 τ1) + (a+ b)ατ0 − b)id+ (a+ b)ατ0τ − bid = 0,

that is

α3(τ 20 τ1)(τ − id) + (a+ b)ατ0(τ − id) = 0.

Again, analyticity of τ 6= id gives us

(4.12) α2τ0τ1 = −(a+ b).

This along with b = −(1 + a)α2τ0τ1 yield

(1 + a)(a+ b)− b = 0.

Simplifying this in view of a = λ1 + λ2 and b = λ1λ2, we obtain

(1 + λ1)(1 + λ2)(λ1 + λ2) = 0.

Let λ1 = −1: Then,

α2τ0τ1 = −(a+ b) = −(λ1 + λ2 + λ1λ2) = 1,

and hence, by (4.3), we conclude T 2f = α2τ0τ1f ◦ τ 2 = f , for every f ∈ Hp(D), that is,

T 2 = I. Then (4.1) implies that R = 0. An analogous calculation results in: λ2 = −1 implies

Q = 0, and λ1 = −λ2 yields P = 0. As a result, this case is redundant.

Case III: τ = id. It follows that τ0 = τ1 = τ2 ≡ 1. The identity in (4.4) yields

α3f − (1 + a)α2f + (a+ b)αf − bf = 0,
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for all f ∈ Hp(D). In particular, for f = 1, we have α3 − (1 + a)α2 + (a+ b)α− b = 0, which

implies that α = 1, λ1, λ2 (recall that a = λ1 + λ2 and b = λ1λ2).

If α = 1, then (4.3) implies that T = I, and hence Q = R = 0. Similarly, if α = λ1, then

Tf = λ1f . Hence, we have P = 0. Finally, suppose α = λ2. Then Tf = αf = λ2f for every

f ∈ Hp(D). Therefore, T = λ2I, and consequently P = 0. As a result, this case is also not

feasible. This completes the proof of the theorem for 1 ≤ p <∞, p 6= 2.

Now we turn to p = ∞. In this case, the proof is identical to the previous case, but the

structure of surjective linear isometries of H∞(D) must be used. In other words, we need

to use the bounded analytic functions version of Proposition 4.2, which can be found in [10,

Theorem 1]: An operator X ∈ B(H∞(D)) is a surjective linear isometry if and only if there

exist α ∈ T and τ ∈ Aut(T) such that

Xf = α(f ◦ τ) (f ∈ H∞(D)).

In view of the above representation, the proof for p =∞ case is identical to the proof for the

previous case, and we omit the details. This completes the proof of the theorem. �

Some of the identities established in the preceding theorem will serve as the foundation for

additional calculations in the following section.

5. Generalized projections on Hp(D2)

The representations of generalized tri-circular projections on Hp(D) as obtained in Theorem

4.3 are common among known generalized tri-circular projections acting on Banach spaces.

However, in this section, we will see that the structure of generalized tri-circular projections

on Hp(D2) is richer.

In what follows, we always assume that 1 ≤ p ≤ ∞, p 6= 2. First, we recall a classification of

surjective linear isometries of Hp(D2) [19, Theorems 1 and 3]: T ∈ B(Hp(T2)) is an isometry

if and only if there exist τ ∈ Aut(D), unimodular function σ ∈ L∞(T), and α ∈ T such that

(5.1) (Tf)(z, w) = α(τ ′(z))
1
pf(τ(z), wσ(z)),

whenever 1 ≤ p <∞, and, if p =∞, then

(5.2) (Tf)(z, w) = αf(τ(z), wσ(z)),

for all f ∈ Hp(T2), and z, w ∈ T.

To ease notation, as in Section 4, for τ ∈ Aut(D) and σ ∈ L∞(T), define

τ0(z) = (τ ′(z))
1
p , τ1(z) = (τ ′ ◦ τ(z))

1
p , and τ2(z) = (τ ′ ◦ τ 2(z))

1
p ,

and also

σ1(z) = σ ◦ τ(z) and σ2(z) = σ ◦ τ 2(z),

for all z ∈ T. However, in what follows, we consider all the above functions (including both τ

and σ) in two variables, but as functions of z alone. For simplicity of notation, we often write

composition of function f 2 instead of f ◦ f (whenever it make sense). Now we are ready for

the characterizations of generalized tri-circular projections on Hp(T2).
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Theorem 5.1. Let P ∈ B(Hp(T2)). Then P is a generalized tri-circular projection if and

only if there exist nontrivial projections Q,R ∈ B(Hp(T2)) and a surjective linear isometry

T ∈ B(Hp(T2)) such that one of the following assertions holds:

(1) T = P +λQ+λ2R, T 3 = I, λ is a cube root of unity, and


P = 1

3
(I + T + T 2)

Q = 1
3
(I + λ2T + λT 2)

R = 1
3
(I + λT + λ2T 2).

(2) T = P −Q± iR, T 4 = I, and


P = 1

4
((1± i)T 2 + 2T + (1∓ i)I)

Q = 1
4
((1∓ i)T 2 − 2T + (1± i)I)

R = 1
2
(I − T 2).

(3) T = P ± iQ−R, T 4 = I, and


P = 1

4
((1± i)T 2 + 2T + (1∓ i)I)

Q = 1
2
(I − T 2)

R = 1
4
((1∓ i)T 2 − 2T + (1± i)I).

(4) T = P ± iQ∓ iR, T 4 = I, and


P = 1

2
(I + T 2)

Q = 1
4
((−1± i)T 2 ∓ 2iT + (1± i)I)

R = 1
4
((−1∓ i)T 2 ± 2iT + (1∓ i)I).

Proof. Suppose 1 ≤ p < ∞. As in the proof of Theorem 4.3, there exist distinct scalars

λ1, λ2 ∈ T \ {1} and non-zero projections Q,R ∈ B(Hp(T2)) such that P ⊕ Q ⊕ R = I and

T := P + λ1Q+ λ2R is a surjective linear isometry. Moreover

(5.3) P =
(T − λ1I)(T − λ2I)

(1− λ1)(1− λ2)
, Q =

(T − I)(T − λ2I)

(λ1 − 1)(λ1 − λ2)
, R =

(T − I)(T − λ1I)

(λ2 − 1)(λ2 − λ1)
,

and

(5.4) T 3 − (1 + a)T 2 + (a+ b)T − bI = 0,

where

a = λ1 + λ2 and b = λ1λ2.

By (5.1), there exist τ ∈ Aut(D), unimodular function σ ∈ L∞(T), and α ∈ T such that

Tf(z, w) = α(τ ′(z))
1
pf(τ(z), wσ(z)),

for all f ∈ Hp(T2) and z, w ∈ T. With the notation introduced preceding the statement of

this theorem, we have

(5.5) Tf = ατ0f(τ, wσ) (f ∈ Hp(T2)),

and, it follows that

(5.6) T 2f = α2τ0τ1f(τ 2, wσσ1)

and

T 3f = α3τ0τ1τ2f(τ 3, wσσ1σ2),
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for all f ∈ Hp(T2). The identity in (5.4) then yields

α3τ0τ1τ2f(τ 3, wσσ1σ2)− (1 + a)α2τ0τ1f(τ 2, wσσ1) + (a+ b)ατ0f(τ, wσ)− bf = 0,(5.7)

for all f ∈ Hp(T2). As in the proof of Theorem 4.3, we again conclude about the following

three possible cases:

(1) τ = id.

(2) τ 6= id and τ 2 = id.

(3) τ, τ 2 6= id and τ 3 = id.

Case 1: Suppose τ, τ 2 6= id and τ 3 = id. We find by using calculations similar to those used

in the proof of Case 1 of Theorem 4.3 that T 3 = I and

P =
1

3
(I + T + T 2), Q =

1

3
(I + λ2T + λT 2), R =

1

3
(I + λT + λ2T 2).

Case 2: Assume that τ 6= id and τ 2 = id. Since τ 2 = id, it follows that τ2 = τ0 and σ2 = σ.

Therefore, (5.7) yields

α3τ 20 τ1f(τ, wσ2σ1)− (1 + a)α2τ0τ1f(id, wσσ1) + (a+ b)ατ0f(τ, wσ)− bf = 0,(5.8)

for all f ∈ Hp(T2). In particular, if f = zm, m ≥ 0, then

α3τ 20 τ1τ
m − (1 + a)α2τ0τ1z

m + (a+ b)ατ0τ
m − bzm = 0,(5.9)

and hence, for f = 1, we obtain

(5.10) α3τ 20 τ1 = (1 + a)α2τ0τ1 − (a+ b)ατ0 + b.

This is the identity (4.9) obtained in Case 2 during the proof of Theorem 4.3. Performing the

same computation for Case 2 in the proof of Theorem 4.3 results in

λ1 = −1, or λ2 = −1, or λ1 = −λ2.(5.11)

Similarly, if f = wm, m ≥ 0, then (5.8) implies

(5.12) α3τ 20 τ1(σ
2σ1)

m − (1 + a)α2τ0τ1(σσ1)
m + (a+ b)ατ0σ

m − b = 0.

If m = 1, then α3τ 20 τ1(σ
2σ1) − (1 + a)α2τ0τ1(σσ1) + (a + b)ατ0σ − b = 0, and hence, using

(5.10), it follows that

(1 + a)α2τ0τ1(σ
2σ1 − σσ1)− (a+ b)ατ0(σ

2σ1 − σ) + b(σ2σ1 − 1) = 0.

By (4.11), we know that b = −(1 +a)α2τ0τ1. As we are in the same setting as Case 2 of proof

of Theorem 4.3, we have

−b(σ2σ1 − σσ1)− (a+ b)ατ0(σ
2σ1 − σ) + b(σ2σ1 − 1) = 0.

After cancelling similar terms, we finally get to the identity

b(σσ1 − 1) = (a+ b)ατ0(σ
2σ1 − σ).(5.13)

Consider the identity (5.12) again, this time with m = 2:

α3τ 20 τ1(σ
2σ1)

2 − (1 + a)α2τ0τ1(σσ1)
2 + (a+ b)ατ0σ

2 − b = 0.
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In view of (5.10), we know α3τ 20 τ1 = (1 + a)α2τ0τ1 − (a + b)ατ0 + b, and hence, the above

equality yields

(1 + a)α2τ0τ1((σ
2σ1)

2 − (σσ1)
2)− (a+ b)ατ0((σ

2σ1)
2 − σ2) + b((σ2σ1)

2 − 1) = 0.

Substituting b = −(1 + a)α2τ0τ1 (see (4.11)) in the above, we derive

b((σ2σ1)
2 − (σσ1)

2) + (a+ b)ατ0((σ
2σ1)

2 − σ2)− b((σ2σ1)
2 − 1) = 0.

When we rearrange and simplify by canceling common terms, we get

b((σσ1)
2 − 1) = (a+ b)ατ0((σ

2σ1)
2 − σ2).

Applying (5.13) to this, we find

b((σσ1)
2 − 1) = b(σσ1 − 1)(σ2σ1 + σ).

The equality simplifies further and finally admits the following form:

(σσ1 − 1)(σσ1 + 1)(σ − 1) = 0.

Therefore, we conclude that

σσ1 = −1, or σσ1 = 1, or σ = 1.(5.14)

This combined with (5.11) results in nine subcases. We summarise them in three subcases.

We proceed in the following manner. First, we recall that (see (4.12))

(5.15) α2τ0τ1 = −(a+ b).

Subcase (i). σσ1 = −1: Let λ1 = −1. Then a+ b = −1, and hence (5.15) implies α2τ0τ1 = 1.

By (5.6), it follows that

(T 2f)(z, w) = f(z,−w) (z, w ∈ T),

for all f ∈ Hp(T2). Since λ1 = −1, by (5.3) implies R = 1
λ22−1

(T 2 − I). Then

Rf(z, w) =
1

λ22 − 1
(f(z,−w)− f(z, w)),

from which, we further conclude that

R2f(z, w) =
2

(λ22 − 1)2
(f(z, w)− f(z,−w)),

for all f ∈ Hp(T2) and z, w ∈ T. Since R2 = R, we have

0 =
( 2

λ22 − 1
+ 1
)
(f(z, w)− f(z,−w)) =

λ22 + 1

λ22 − 1
(f(z, w)− f(z,−w)),

that is, −(λ22 + 1)(Rf)(z, w) = 0 for all f . Equivalently, λ2 = ±i. If λ2 = i, then T =

P − Q + iR, and consequently T 2 = P + Q − R. From these two equations we get P =
1
2
(T 2 +T + (1− i)R) = 1

4
((1 + i)T 2 + 2T + (1− i)I). The similar conclusions hold for λ2 = −i.

Using (5.3) we observe that Q = 1
4
((1∓ i)T 2 − 2T + (1± i)I), R = 1

2
(I − T 2).
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Next, assume that λ2 = −1. Here too, α2τ0τ1 = 1, and a calculation similar to the one above

implies that

Qf(z, w) =
1

λ21 − 1

(
f(z,−w)− f(z, w)

)
and

Q2f(z, w) =
2

(λ21 − 1)2
(
f(z, w)− f(z,−w)

)
,

for all f ∈ Hp(T2) and z, w ∈ T, and finally, (λ21 + 1)Q = 0. Equivalently, λ1 = ±i. If λ1 = i,

then T = P+iQ−R and consequently T 2 = P−Q+R. We obtain P = 1
2
(T 2+T+(1−i)Q) =

1
4
((1 + i)T 2 + 2T + (1− i)I). The similar conclusions hold for λ1 = −i. Applying (5.3) we get

Q = 1
2
(I − T 2), R = 1

4
((1∓ i)T 2 − 2T + (1± i)I).

Finally, assume that λ1 = −λ2. Then a+b = −λ21 and hence α2τ0τ1 = λ21. Hence T 2f(z, w) =

λ21f(z,−w). By (5.3), we have P = 1
1−λ21

(T 2 − λ21I), which implies that

Pf(z, w) =
λ21

1− λ21

(
f(z,−w)− f(z, w)

)
,

and

P 2f(z, w) = 2

(
λ21

1− λ21

)2(
f(z, w)− f(z,−w)

)
,

for all f ∈ Hp(T2) and z, w ∈ T. Since P 2 = P , it follows that

2

(
λ21

1− λ21

)2(
f(z, w)− f(z,−w)

)
=

λ21
1− λ21

(
f(z,−w)− f(z, w)

)
,

for all f ∈ Hp(T2) and z, w ∈ T. We deduce therefore that (λ21 +1)P = 0, and hence λ1 = ±i.
Suppose λ1 = i. Then λ2 = −i and hence T = P + iQ− iR and T 2 = P −Q−R. Moreover,

P = 1
2
(I + T 2). Similarly, if λ1 = −i, then T = P − iQ + iR and T 2 = P − Q − R, and

again P = 1
2
(I + T 2). Applying (5.3) we obtain Q = 1

4
((−1 ± i)T 2 ∓ 2iT + (1 ± i)I), R =

1
4
((−1∓ i)T 2 ± 2iT + (1∓ i)I).

Subcase (ii). σσ1 = 1: Recall from (5.15) that α2τ0τ1 = −(a + b). If λ1 = −1 or λ2 = −1,

then (a + b) = −1, and hence α2τ0τ1 = 1. Then (5.6) implies T 2 = I, and hence, by (5.3),

R = 0 (if λ1 = −1) or Q = 0 (if λ2 = −1). Similarly, if λ1 = −λ2, then α2τ0τ1 = λ21. This

implies T 2 = λ21I, and hence, by (5.3), P = 0.

Subcase (iii). σ = 1: As in the previous subcase, λ1 = −1 or λ2 = −1 imply R = 0 or

Q = 0, respectively. If λ1 = −λ2, then again α2τ0τ1 = λ21, which implies that T 2 = λ21I, and

consequently P = 0.

Case 3: Suppose τ = id. Then σ1 = σ2 = σ and τ1 = τ2 = τ0, and hence (5.7) yields

α3τ 30 f(τ, wσ3)− (1 + a)α2τ 20 f(τ, wσ2) + (a+ b)ατ0f(τ, wσ)− bf(τ, w) = 0,(5.16)

for all f ∈ Hp(T2). In particular, if f = 1, then

α3τ 30 − (1 + a)(ατ0)
2 + (a+ b)(ατ0)− b = 0,

and hence α = τ−10 , λ1τ
−1
0 , λ2τ

−1
0 . In addition, we also have three alternatives:

(1) σ = 1.

(2) σ 6= 1 and σ2 = 1.
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(3) σ 6= 1, σ2 6= 1, and σ3 = 1.

Indeed, if σ(z0), σ(z0)
2, σ(z0)

3 6= 1 for some z0 ∈ T, then there exists a Lagrange polynomial

L such that L(w0σ(z0)) = L(w0σ(z0)
2) = L(w0σ(z0)

3) = 0 and L(w0) = 1. If we set f(z, w) =

L(w), z, w ∈ T, in (5.16), then

α3τ 30L(w0σ(z0)
3)− (1 + a)α2τ 20L(w0σ(z0)

2) + (a+ b)ατ0L(w0σ(z0))− bL(w0) = 0,

implies that b = λ1λ2 = 0: a contradiction. We now move on to the three following subcases.

Subcase (i). σ = 1: If α = τ−10 or α = λ1τ
−1
0 , then T = I or T = λ1I respectively. Hence

R = 0 = Q or P = 0 = R. Similarly, if α = λ2τ
−1
0 , then T = λ2I, which implies that

P = 0 = Q.

Subcase (ii). σ 6= 1, σ2 = 1: By (5.16), we get

α3τ 30 f(τ, wσ)− (1 + a)α2τ 20 f(τ, w) + (a+ b)ατ0f(τ, wσ)− bf(τ, w) = 0.

That is

(α3τ 30 + (a+ b)ατ0)f(τ, wσ)− ((1 + a)α2τ 20 + b)f(τ, w) = 0.

Since σ 6= 1, there exists z0 such that σ(z0) 6= 1. We choose Lagrange polynomials, f(z, w) =

Li(w) ∈ Hp(T2), i = 1, 2 such that f(z0, w0σ(z0)) = L1(w0σ(z0)) = 1, f(z0, w0) = L1(w0) = 0

and f(z0, w0σ(z0)) = L2(w0σ(z0)) = 0, f(z0, w0) = L2(w0) = 1. Then we have

α3τ0(z0)
3 + (a+ b)ατ0(z0) = 0,

and

(1 + a)α2τ0(z0)
2 + b = 0.

From these two equalities we have

(1 + a)(a+ b)− b = (1 + λ1 + λ2)(λ1 + λ2 + λ1λ2)− λ1λ2 = 0.

We get, λ1 = −1 or λ2 = −1 or λ1 = −λ2. We consider this with other three possibilities

α = τ−10 , λ1τ
−1
0 , λ2τ

−1
0 as follows:

(1) α = τ−10 : If λ1 = −1 or λ2 = −1, then R = 0 or Q = 0. If λ1 = −λ2, then P = I.

(2) α = λ1τ
−1
0 : Suppose λ1 = −1 or λ1 = −λ2 imply R = 0 or P = 0. If λ2 = −1, then

Q = I.

(3) α = λ2τ
−1
0 : Let λ1 = −1 then R = I. If λ2 = −1 or λ1 = −λ2, then Q = 0 or P = 0

respectively.

So these subcases are not possible.

Subcase (iii). σ 6= 1, σ2 6= 1, σ3 = 1: By (5.16), we get

α3τ 30 f(τ, w)− (1 + a)α2τ 20 f(τ, wσ2) + (a+ b)ατ0f(τ, wσ)− bf(τ, w) = 0.

Since σ 6= 1, σ2 6= 1, then there exists z0 such that σ(z0) 6= 1 and (σ(z0))
2 6= 1. We choose

Lagrange polynomials, f(z, w) = Li(w) ∈ Hp(T2), i = 1, 2, such that

f(z0, w0σ(z0)
2) = L1(w0σ(z0)

2) = 1, f(z0, w0) = L1(w0) = 0,

f(z0, w0σ(z0)) = L1(w0σ(z0)) = 0, and f(z0, w0σ(z0)) = L2(w0σ(z0)) = 1,

f(z0, w0) = L2(w0) = 0, f(z0, w0σ(z0)
2) = L2(w0σ(z0)

2) = 0.
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Then −(1 + a)α2(τ0(z0))
2 = 0, and (a+ b)α(τ0(z0)) = 0. Using these two equations we have,

1 + a = 0 and a+ b = 0. We observe that λ1 = λ and λ2 = λ2. Therefore, by (4.1) and (4.2),

it follows that T 3 = I and

P =
I + T + T 2

3
, Q =

I + λ2T + λT 2

3
, and R =

I + λT + λ2T 2

3
,

which completes the proof of the theorem for 1 ≤ p < ∞. The argument for p = ∞ case is

also similar. In this case, one needs to use (5.2). This completes the proof of the theorem. �

Given the results presented in this paper, representing surjective linear isometries of vector-

valued Hp-spaces on the bidisc for all 1 ≤ p ≤ ∞, p 6= 2 is an intriguing problem. However,

see [3] for the answer in the scalar case.
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